Fisher[™] 3660 and 3661 Positioners

Fisher 3660 pneumatic and 3661 electro-pneumatic single-acting positioners are part of the 3660 series of positioners. They are used with various actuators on sliding-stem valves for throttling applications. These rugged positioners provide a valve position proportional to a pneumatic input or a standard millampere DC input signal received from a control device.

Features

- Accurate, Efficient, Vibration-Resistant
 Operation—Positioner design provides accurate, fast-responding instruments able to withstand the vibrations of most plant environments. Low steady-state air consumption contributes to efficient operation.
- Variable Gain—Easily adjustable gain and damping adjustments fine tune the positioner stability to specific application requirements.
- Versatility—Positioner accepts a standard pneumatic input signal (3660) or a standard milliampere DC input signal (3661) from a control device. This positioner provides split range capabilities and adjustable zero and spans.
- Fewer Spare Parts Required—Most of the parts for 3660 and 3661 positioners are interchangeable, requiring fewer spare parts to support these positioners.
- Rugged Construction—The case and cover are designed to withstand mechanical vibration and rough handling.

Fisher 3660 Positioner with Baumann™ Valve and Actuator

W7174-1

- Easy Positioner Adjustments—Zero and span adjustments can be made with the cover in place.
- Control Valve Diagnostic Testing Capability—To support diagnostic testing of valve/actuator/positioner packages with the FlowScanner[™] valve diagnostic system, connectors, piping, and other hardware can be installed between the 3660 or 3661 positioner and the actuator. A typical connector installation is shown in figure 4.

www.Fisher.com

Specifications

Available Configuration

The Fisher 3660 series of positioners include the following models:

3660: Single-acting pneumatic valve positioner **3661:** Single-acting electro-pneumatic valve positioner

Input Signal

3660:

■ 0.2 to 1.0 bar (3 to 15 psig), ■ 0.4 to 2.0 bar (6 to 30 psig), or ■ Split range, see table 2 3661:
■ 4-20 mA DC constant current with 30 VDC

maximum compliance voltage
Split range is also available, see table 2

Equivalent Circuit (3661)

120 ohms shunted by three 5.6 V zener diodes

Output Signal

Type: Pneumatic pressure as required by the actuator up to full supply pressure Action: ■ Direct (increasing input signal increases positioner output), ■ Reverse (increasing input signal decreases positioner output)

Supply Pressure⁽¹⁾

Recommended: 10% above actuator requirements Maximum: 6.2 bar (90 psig) or pressure rating of actuator, whichever is lower

Medium: Air

3660 and 3661 are not compatible with natural gas as the supply medium

Performance

Independent Linearity: ±1% of output span Hysteresis: 0.5% of output span⁽²⁾ Deadband: 0.1% of input span Electromagnetic Compatibility for 3661 electro-pneumatic positioner: Meets EN 61326-1:2013 Immunity—Industrial locations per Table 2 of the EN 61326-1 standard. Performance is shown in table 1 below. Emissions—Class A

ISM equipment rating: Group 1, Class A

Positioner Adjustments

Span: Adjustable from 19 mm to 50 mm (0.75 to 2 inches) stem travel Zero: 0 to 100% Gain: 0.5 to 6% PB (proportional band)⁽³⁾ Output Volume Damping: Loop dynamic response adjustment

Delivery Capacity⁽⁴⁾:

1.4 Bar (20 Psig) Supply: 4.3 normal m³/hour (150 scfh) *2.4 Bar (35 Psig) Supply:* 6.6 normal m³/hour (230 scfh)

Exhaust Capacity⁽⁴⁾:

1.4 Bar (20 Psig) Supply: 4.8 normal m³/hour (170 scfh) 2.4 Bar(35 Psig) Supply: 7.4 normal m³/hour (260 scfh)

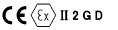
Steady-State Air Consumption^(4,5)

3660: 0.17 normal m³/hour (6.0 scfh) at
1.4 bar (20 psig) supply pressure.
0.22 normal m³/hour (7.9 scfh) at 2.4 bar (35 psig) supply pressure
3661: 0.24 normal m³/hour (8.8 scfh) at 1.4 bar (20 psig) supply pressure. 0.33 normal m³/hour (12.3 scfh) at 2.4 bar (35 psig) supply pressure

Operating Influences

Supply Pressure: 69 mbar (1 psig) change in supply pressure changes the actuator stem position less than $0.16\%^{(6)}$ of the travel

Operative Temperature Limits⁽¹⁾


-40 to 82°C (-40 to 180°F)

- continued -

Specifications (continued)

Hazardous Area Classification for 3660

3660 pneumatic positioners comply with the requirements of ATEX Group II Category 2 Gas and Dust

Ex h IIC Tx Gb Ex h IIIC Tx Db

Maximum surface temperature (Tx) depends on operating conditions

Gas: T6 Dust: T82

3660 pneumatic positioners meet Customs Union technical regulation TP TC 012/2011 for Groups II/III Category 2 equipment

II Gb c T*X III Db c T*X Łχ FAL

Hazardous Area Classification for 3661

CSA & FM—Intrinsically Safe, Type n, Non-incendive ATEX & IECEx—Intrinsically Safe, Type n (Gas Atmospheres Only)

Housing Classification for 3661

CSA—Type 3 Encl.

FM-NEMA 3, IP54

ATEX & IECEx-IP44

Mounting orientation requires vent location to be below horizontal

Other Classifications/Certifications for 3661

CUTR— Customs Union Technical Regulations (Russia. Kazakhstan, Belarus, and Armenia)

INMETRO— National Institute of Metrology, Quality, and Technology (Brazil)

KGS—Korea Gas Safety Corporation (South Korea)

Contact your Emerson sales office for classification/certification specific information

NOTE: Specialized instrument terms are defined in ANSI/ISA Standard 51.1 - Process Instrument Terminology. 1. The pressure/temperature limits in this bulletin and any applicable standard or code limitation should not be exceeded. 2. Hysteresis value at a gain setting of 1/2 turn. 3. Adjusting the gain (PB) adjustment will change the nozzle flapper relationship. This nozzle flapper change affects the actuator/positioner response time.

4. Normal m³/hr--normal cubic meters per hour (0°C and 1.01325 bar absolute). Scfh--standard cubic feet per hour (60°F and 14.7 psia).
 5. Air consumption at a gain setting of 1/2 turn.
 6. At supply pressure of 2.4 bar (35 psig).

Mounting

The positioner can be mounted in one of four different configurations. See figure 1.

Pressure Connections

1/4 NPT internal

Conduit Connection for 3661

1/2 NPT (M20 or PG13 adaptors optional)

Vent Connection

1/4 NPT internal

Maximum Valve Stem Travel

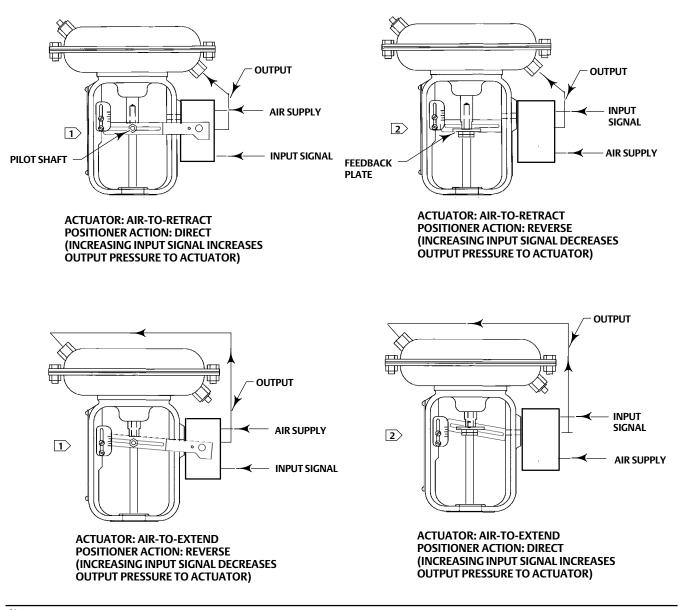
50 mm (2 inch): adjustable to obtain lesser travel with standard input signal—minimum 19 mm (0.75 inch)

Construction Materials

See table 4

Approximate Weight

3660: 2.6 pounds (1.2 kg) **3661:** 3.0 pounds (1.4 kg)


Options

3660: ■ Instrument and output pressure gauges, ■ Integrally mounted bypass valve 3661: Output pressure gauge 3660 and 3661: Connectors for diagnostic testing

■ stainless steel or ■ brass

Table 1. Fisher 3661 Electro-Pneumatic Positioner EMC Summary Results—Immunity

Port	Phenomenon	Basic Standard	Test Level	Performance Criteria ⁽¹⁾	
	Electrostatic discharge (ESD)	IEC 61000-4-2	4 kV contact 8 kV air	А	
Enclosure	Radiated EM field	IEC 61000-4-3	80 to 1000 MHz @ 10V/m with 1 kHz AM at 80% 1400 to 2000 MHz @ 3V/m with 1 kHz AM at 80% 2000 to 2700 MHz @ 1V/m with 1 kHz AM at 80%	A	
	Rated power frequency magnetic field	IEC 61000-4-8	60 A/m at 50 Hz	А	
	Burst	IEC 61000-4-4	1 kV	А	
I/O signal/control	Surge	IEC 61000-4-5	1 kV (line to ground only, each)	В	
	Conducted RF	IEC 61000-4-6	150 kHz to 80 MHz at 3 Vrms	А	

Figure 1. Mounting Configurations (see table 3 for Positioner Action and Signals)

When mounting on Baumann actuators, install feedback plate so lip is up. Install feedback lever arm assembly so pilot shaft is on top of the feedback plate.
 When mounting on Baumann actuators, install feedback plate so lip is down. Install feedback lever arm assembly so pilot shaft

Notes:

² When mounting on Baumann actuators, install feedback plate so lip is down. Install feedback lever arm assembly so pilot shaft is underneath the feedback plate.

¹⁷B9106-B 17B9105-B 38B0195-B A4035-2

Table 2. Standard and Split Range Capabilities

POSITIONER		3660		3660	3661
Split	0.2 to 1.0 bar (3 to 15 Psig) Input Signal		(6	4 to 2.0 bar to 30 Psig) 1put Signal	4 to 20 mA DC Input Signal
	Bar	Psig	Psig	Bar	
One Way 1:1	0.2 to 1.0	3 to 15	6 to 30	0.4 to 2.0	4 to 20
Two Way 2:1	0.2 to 0.6 0.6 to 1.0	3 to 9 9 to 15	6 to 18 18 to 30	0.4 to 1.2 1.2 to 2.0	4 to 12 12 to 20
Three Way 3:1	0.2 to 0.5 0.5 to 0.8 0.8 to 1.0	3 to 7 7 to 11 11 to 15	6 to 14 14 to 22 22 to 30	0.4 to 1.0 1.0 to 1.6 1.6 to 2.0	4 to 9.33 9.33 to 14.66 14.66 to 20
Four Way 4:1	0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1.0	3 to 6 6 to 9 9 to 12 12 to 15	6 to 12 12 to 18 18 to 24 24 to 30	0.4 to 0.8 0.8 to 1.2 1.2 to 1.6 1.6 to 2.0	4 to 8 8 to 12 12 to 16 16 to 20

Table 3. Positioner Input Signal, Action, and Output Signal

Input Signal	Positioner Output	
Direct 0.2 to 1.0 bar (3 to 15 psig) 0.4 to 2.0 bar (6 to 30 psig) 4 to 20 mA		
Reverse 1.0 to 0.2 bar (15 to 3 psig) 2.0 to 0.4 bar (30 to 6 psig) 20 to 4 mA	Up to 6.2 bar (90 psig)	
For split range signal refer to table 2		

Table 4. Construction Materials

DADT	MATERIAL		
PART	Standard	Optional	
Case and Cover	Aluminum		
Feedback Lever Assembly	Stainless Steel		
Range Spring	N09902		
Input Module Diaphragm Relay Gasket O-Ring	Nitrile Nitrile Silicone Rubber Ethylene/Propylene		
Nozzle	Aluminum		
Flapper	Aluminum		
Relay Metal Parts	Aluminum and Stainless Steel		
Gauges	Brass and Plastic		
All Fasteners	Stainless Steel		
Exterior Tubing and Fitting	Copper/Brass	Stainless Steel	
Connectors for Diagnostic Testing	Stainless Steel or Brass		

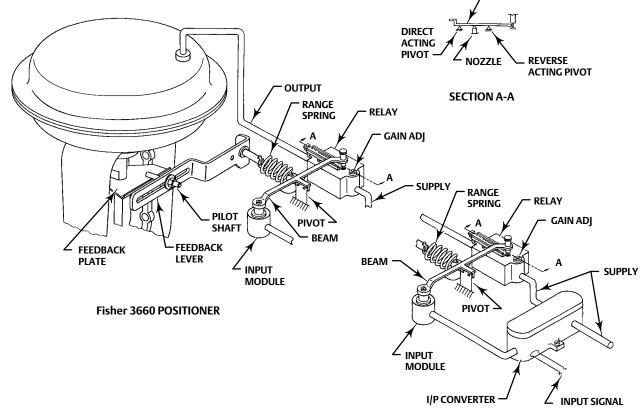
Principle of Operation

Refer to figure 2 for operational schematic.

The instrument pressure acts on the input module, which controls the flapper-nozzle system of the relay. Supply pressure is applied to the relay, and the output pressure of the relay is supplied to the control valve actuator.

For a direct-acting positioner, increases in instrument pressure causes the input module to pivot the beam. The beam pivots the flapper and restricts the nozzle. The nozzle pressure increases and causes the relay assembly to increase output pressure to the actuator. With a direct-acting actuator, this increased pressure moves the actuator stem downward. Stem movement is fed back to the beam by means of a feedback lever and range spring, which cause the flapper to pivot slightly away from the nozzle to prevent any further increases in relay output pressure. The positioner is

Figure 2. Operational Schematic


once again in equilibrium but at a higher instrument pressure, a slightly different flapper position, and a new actuator stem position.

A decrease in instrument pressure decreases nozzle pressure, which allows the relay to bleed off actuator loading pressure.

Operation of a reverse-acting positioner is similar except that the flapper position is reversed from that shown in figure 2. The reversed position uses the alternate flapper pivot point so that increases in instrument pressure rotate the flapper away from the nozzle to reduce nozzle pressure.

With a 3661 electro-pneumatic positioner, the electro-pneumatic converter provides a 0.2 to 1.0 bar (3 to 15 psig) output pressure proportional to the 4-20 mA input signal. The 0.2 to 1.0 bar (3 to 15 psig) output pressure becomes the input signal pressure to the input module.

FLAPPER

Fisher 3661 POSITIONER

ACTUATOR

CENTERLINE

DIM X-

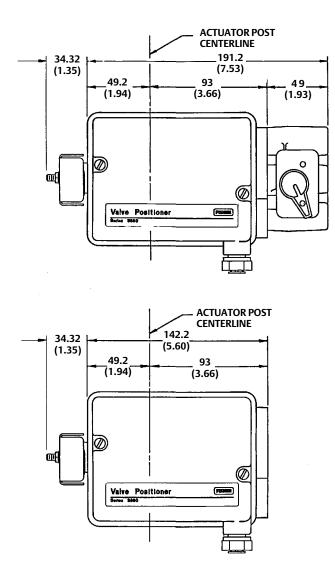
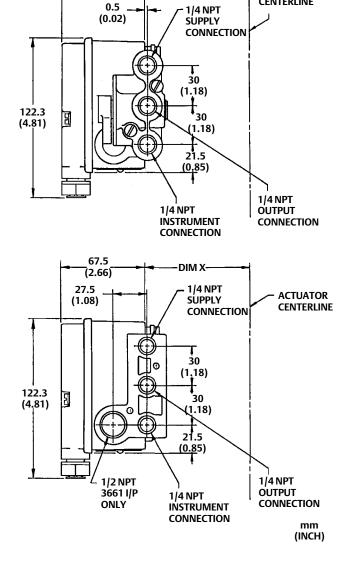



Figure 3. Positioner Dimensions and Connections (see table 5 for the X dimension)

67.5

(2.66)

31B3959-C C0686-3

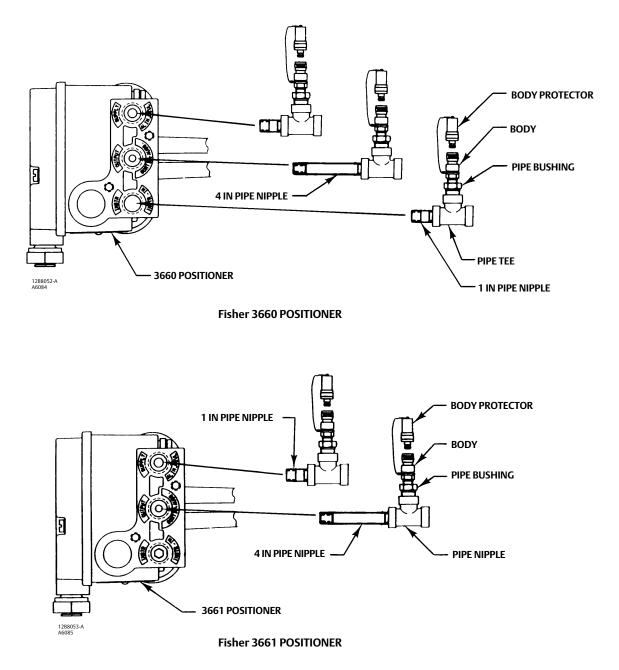
ACTUATOR CENTERLINE TO POSITIONER				
Turne	6	Х		
Туре	Size	mm	Inch	
	30	92.2	3.63	
	34	95.3	3.75	
	40	104.9	4.13	
	45/46	108.0	4.25	
657/667	50/60	128.5	5.06	
100/100	30i	121.5	4.78	
	34i	123.2 / 121.5	4.85/4.78	
	40i	129.5	5.10	
	45i/46i	129.5 / 134.9	5.10/5.31	
	50i/60i	144.5	5.69	
	225	86.0	3.39	
1250	450	86.0	3.39	
	675	110.0	4.33	
	1.21	83.5	3.29	
3024S	1.31	87.5	3.44	
	1.41	87.5	3.44	
	16in ²	53.8	2.12	
Baumann	32in ²	71.4	2.81	
Daumann	54in ²	71.4	2.81	
	70in ²	71.4	2.81	
	225	81.0	3.19	
GX	750	81.0	3.19	
	1200	81.0	3.19	

Table 5. Dimension X for figure 3

Installation

The supply pressure medium should be clean, dry, filtered air. If the supply source is capable of exceeding the maximum actuator operating pressure or positioner supply pressure, appropriate steps must be taken during installation to protect the positioner and all connected equipment against overpressure.

Overall dimensions and connections are shown in figure 3 and table 5.


Ordering Information

Application

When ordering, specify:

- 1. Type number
- 2. Input signal range: pneumatic or milliampere
- 3. Maximum supply pressure available
- 4. Valve plug travel: actuator type and size
- 5. Stroking time requirements, if critical
- 6. Ambient temperature range
- 7. Direct or reverse acting
- 8. Supply pressure regulator, gauges, and bypass, if required
- 9. Hazardous area classification (3661)
- 10. Connectors for diagnostic testing, if required

Figure 4. FlowScanner Diagnostic System Connections

Neither Emerson, Emerson Automation Solutions, nor any of their affiliated entities assumes responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use, and maintenance of any product remains solely with the purchaser and end user.

Fisher, Baumann, and FlowScanner are marks owned by one of the companies in the Emerson Automation Solutions business unit of Emerson Electric Co. Emerson Automation Solutions, Emerson, and the Emerson logo are trademarks and service marks of Emerson Electric Co. All other marks are the property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Emerson Automation Solutions Marshalltown, Iowa 50158 USA Sorocaba, 18087 Brazil Cernay, 68700 France Dubai, United Arab Emirates Singapore 128461 Singapore

www.Fisher.com

